为了实现这一目标,研究人员发展了胶体湿化学“前驱物诱导”方法首次成功制备了一种独特多形体异质结Cu1.94S-CuS,即把一维半导体性的Cu1.94S和二维金属性的CuS复合在一起,以形成特殊的“自相互作用”界面。在合成过程中,前驱物Mn(S2CNEt2)2起到至关重要的作用,它可诱导和控制Cu1.94S至CuS的相变过程,使形成的硫化铜多形体Cu1.94S-CuS纳米异质结可以稳定存在。这种独特的Cu1.94S-CuS纳米异质结可有效吸收太阳光的可见和近红外区域。通过密度泛函理论计算表明,这种特殊的界面可以构筑类似于“金属-半导体”界面结构,从而构筑了类似于type-II异质结构,有效促进了体系中电子和空穴的分离,显著提升了该体系材料的光电转换性能。
这种基于前驱物诱导合成硫化物异质纳米结构的方法,有助于人们精确控制纳米材料的结构和深入理解其形成机理。同时,这种无贵金属参与的异质纳米结构的合成策略将为提升和优化传统半导体的光电转换性能提供了新的思路。
此前,俞书宏课题组还发现了有机膦与Ag+和Bi3+配位络合进而在高温下被还原为银单质和铋单质的现象,据此发展了一种基于有机膦作用下的银基和铋基纳米晶及其异质纳米结构的通用合成方法,成功合成了Ag、Bi、Ag-Ni3S2、Ag-ZnS、Ag-AgInS2、Ag-Bi及Bi-Cu7S4等一系列银基和铋基纳米材料,这对于胶体纳米晶的合成方法来说是一个有力的补充。研究人员发现银和铋的硫族化合物在有机胺中存在溶解平衡,根据路易斯软硬酸碱理论,溶液中的有机膦可以与Ag+和Bi3+配位络合,打破其溶解平衡,释放出更多Ag+和Bi3+,进而在高温下被有机胺还原成银和铋的单质。通过这种方法合成的纳米晶和异质结在催化、光电转化、生物传感等领域都有着潜在的应用价值。相关研究结果发表在《美国化学会志》上(J. Am. Chem. Soc. 2015, 137(16), 5390-5396)。
上述研究工作受到国家自然科学基金委创新研究群体、国家自然科学基金重点基金、国家重大科学研究计划、中国科学院前沿科学重点研究项目、苏州纳米科技协同创新中心、中国科学院纳米科学卓越中心、合肥大科学中心卓越用户基金的资助。
相关文章链接:http://pubs.acs.org/doi/abs/10.1021/jacs.6b06609.。
QQ图片20161007155947.png