甲烷作为一种重要的碳基小分子,在自然界分布广泛,是天然气、页岩气、可燃冰、沼气等的主要成分。迄今为止,甲烷的使用仍以燃烧为主,导致排放出大量的二氧化碳。甲烷作为化工原料主要用于合成氨、甲醇及其衍生物,但其用量仅占天然气消耗量的5%-7%。虽然甲烷储量远远超过石油储量,但作为化工原料其开发程度远无法与石油相比。如何将储量巨大的甲烷资源转化为具有更高经济附加值的燃料或化工产品,具有重要的科学意义和应用前景。太阳能作为最为丰富和清洁的能源,可通过光催化方式在温和条件下驱动甲烷转化为多碳燃料或化学品。近年来,中国科学技术大学熊宇杰教授和龙冉教授研究团队发展了一系列光/光电催化方法,实现了甲烷高选择性转化制乙烷、乙烯和乙二醇(J. Am. Chem. Soc. 2021, 143, 269;Angew. Chem. Int. Ed. 2021, 60, 9357)。
近日,熊宇杰教授和龙冉教授研究团队与中国科学技术大学杨金龙院士团队付岑峰副研究员、南京大学邹志刚院士团队姚颖方教授合作,发展了光催化甲烷无氧偶联(NOCM)方法,实现了高选择性制备乙烷和氢气,效率达到中温热催化NOCM水平,发表在《自然·通讯》期刊(Nat. Commun. DOI: 10.1038/s41467-022-30532-z)。
光催化NOCM可以在温和条件下同时获取多碳烃类和氢气,是一条极具吸引力的途径。氧化物半导体凭借其良好的光利用率和优秀的氧化能力,被广泛应用于光催化NOCM的研究。然而,用于活化甲烷的光生空穴主要聚集在氧化物半导体的晶格氧位点,使得甲烷极易被晶格氧原子过度氧化产生一氧化碳、二氧化碳等副产物。在该工作中,熊宇杰和龙冉团队提出通过单原子配位负载的方法来调控光催化剂的价带电子结构,以得到具有高活性、选择性和稳定性的NOCM光催化剂。以最常见的二氧化钛为例,在其表面构建的“钯-氧”配位结构,可以将光生空穴聚集在“钯-氧”配位结构单元上,从而在提高光催化NOCM性能的同时降低甲烷的过度氧化程度。基于该策略,实现了94.3%乙烷选择性、0.91 mmol g-1 h-1乙烷产率以及等化学计量比的氢气产物。进一步地,通过元素掺杂的方法,提高了催化剂中晶格氧的稳定性,进而延长催化性能的稳定性。该工作为发展高效光催化NOCM催化剂提供了新的思路。
该工作的同步辐射近常压光电子能谱和红外光谱原位表征分别得到上海光源刘志教授和合肥光源戚泽明研究员、刘恒劼工程师的合作支持。研究工作得到了国家重点研发计划、国家杰出青年科学基金、国家优秀青年科学基金、中国科学院B类先导科技专项培育项目等项目的资助。
论文链接:https://www.nature.com/articles/s41467-022-30532-z
(化学与材料科学学院,国家同步辐射实验室、科研部)